
Noname manuscript No.
(will be inserted by the editor)

Split Miner: Automated Discovery of Accurate and
Simple Business Process Models from Event Logs

Adriano Augusto ⋅ Raffaele Conforti ⋅
Marlon Dumas ⋅ Marcello La Rosa ⋅
Artem Polyvyanyy

Received: 22 Dec 2017 / Revised: 09 Apr 2018 / Accepted: 27 Apr 2018

Abstract The problem of automated discovery of process models from event logs
has been intensively researched in the past two decades. Despite a rich field of propos-
als, state-of-the-art automated process discovery methods suffer from two recurrent
deficiencies when applied to real-life logs: (i) they produce large and spaghetti-like
models; and (ii) they produce models that either poorly fit the event log (low fitness)
or over-generalize it (low precision). Striking a tradeoff between these quality di-
mensions in a robust and scalable manner has proved elusive. This paper presents an
automated process discovery method, namely Split Miner, which produces simple
process models with low branching complexity and consistently high and balanced
fitness and precision, while achieving considerably faster execution times than state-
of-the-art methods, measured on a benchmark covering twelve real-life event logs.
Split Miner combines a novel approach to filter the directly-follows graph induced
by an event log, with an approach to identify combinations of split gateways that
accurately capture the concurrency, conflict, and causal relations between neighbors
in the directly-follows graph. Split Miner is also the first automated process discovery
method that is guaranteed to produce deadlock-free process models with concurrency,
while not being restricted to producing block-structured process models.

Keywords Process Mining, Automated Process Discovery, Event Log, BPMN

1 Introduction

Modern information systems maintain detailed trails of the business processes they
support, including records of business process execution events, such as the creation
of a case or the execution of a task within an ongoing case. Process mining techniques
allow analysts to extract insights about the performance of a business process from
collections of such event records, also known as event logs [30]. In this context, an

Adriano Augusto ⋅ Raffaele Conforti ⋅ Marcello La Rosa ⋅ Artem Polyvyanyy
The University of Melbourne
E-mail: {raffaele.conforti,marcello.larosa,artem.polyvyanyy}@unimelb.edu.au

Adriano Augusto ⋅ Marlon Dumas
University of Tartu
E-mail: {adriano.augusto,marlon.dumas}@ut.ee

2 Augusto et al.

event log consists of a set of traces, each trace itself consisting of the sequence of
event records pertaining to a case.

Among other things, process mining techniques allow us to automatically discover
a business process model (e.g. in the standard Business Process Model and Notation –
BPMN1) from an event log. For it to be useful, an automatically discovered process
model ought to accurately reflect the behavior recorded in or implied by the event
log. Specifically, the process model should: (i) parse the traces in the log; (ii) parse
traces that are not in the log but are likely to belong to the process that produced the
log; and (iii) not parse other traces. The first property is called fitness, the second one
generalization and the third one precision. Moreover, the model should be as simple
as possible, a property usually quantified via complexity measures.

Despite intensive research [35,5], striking a tradeoff between the above four
quality dimensions (fitness, precision, generalization, and complexity) has proved
elusive. When applied to real-life logs, the vast majority of automated process dis-
covery methods, such as the Heuristics Miner [36] and its derivatives, produce large,
spaghetti-like and oftentimes behaviorally incorrect (e.g. deadlocking) process models.
Another state-of-the-art method, namely the Inductive Miner [16], often produces
block-structured and hence behaviorally correct process models with high fitness,
but poor precision. In other words, the produced process models over-generalize the
behavior observed in the event log.

This article addresses this gap by proposing an automated process discovery
method designed to produce simple process models, while balancing fitness, precision
and generalization. The proposal combines a novel approach to filter the directly-
follows graph induced by an event log, with an approach to identify combinations
of split gateways that capture the concurrency, conflict and causal relations between
neighbors in the directly-follows graph. Given this focus on discovering split gateways,
the proposed method is named Split Miner.

In its basic variant, Split Miner generates BPMN process models with OR-join
gateways. Empirical studies have shown that OR-join gateways induce higher cogni-
tive overload on process model users than the alternative AND-join and XOR-join
gateways, which have a simpler semantics. Hence, well-accepted guidelines for pro-
cess modeling recommend that OR-join gateways should be used sparingly [22].
Accordingly, Split Miner incorporates an algorithm to replace OR-join gateways with
AND-join or XOR-join gateways, while guaranteeing that the resulting process model
remains sound (in the case of acyclic process models), and deadlock-free in all cases.
To the best of our knowledge, the Split Miner is the first automated process discovery
method that produces process models that are guaranteed to be deadlock-free, while
not being restricted to producing block-structured process models only.

The article also reports on an empirical comparison between Split Miner and four
state-of-the-art baselines based on a set of twelve real-life event logs, and using nine
performance measures covering the above four quality dimensions as well as execution
time.

This article is an extended and revised version of a conference paper [4]. With
respect to the conference version, the main extensions are:

○ A revised algorithm for filtering the directly-follows graph, which ensures that the
filtered graph has the basic properties of a syntactically correct BPMN process
model, namely that every node is on a path from a single source node to a single
sink node.

1 http://www.bpmn.org/

Title Suppressed Due to Excessive Length 3

○ An algorithm to post-process the output of the Split Miner in order to replace
OR-join gateways with AND-join and XOR-join gateways.

○ Formal proofs of the semantic properties of process models produced by the
revised Split Miner algorithm.

The rest of the article is structured as follows. Section 2 provides an overview of
automated process discovery methods. Next, Section 3 presents the Split Miner method,
while Section 4 formally analyzes the semantic properties (deadlock-freedom and
soundness) of process models produced by Split Miner. Finally, Section 5 discusses the
empirical evaluation of Split Miner, while Section 6 draws conclusions and sketches
future work directions.

2 Background and Related Work

This section introduces several quality dimensions and metrics for assessing the good-
ness of automated process discovery methods. The section also provides an overview
of existing automated process discovery methods and discusses their limitations.

2.1 Quality Dimensions in Automated Process Discovery

The quality of automatically discovered process models is generally assessed along
four dimensions: recall (a.k.a. fitness), precision, generalization and complexity [30].

Fitness is the ability of a model to reproduce the behavior contained in the log. A
fitness of one means that the model can reproduce every trace in the log. In this article,
we use the fitness measure proposed in [2], which measures the degree to which each
trace in the log can be aligned with a corresponding trace produced by the process
model.

Precision is the ability of a model to generate only the behavior found in the log. A
score of one indicates that any trace produced by the process model is contained in the
log. We use the precision measure defined in [1], which is based on similar principles
as the above fitness measure. Recall and precision can be combined together into a
single measure of accuracy, known as F-score, which is the harmonic mean of fitness
and precision, i.e. (2 ⋅ Fitness⋅Precision

Fitness+Precision).
Generalization refers to the ability of a discovery method to capture behavior

of the observed process that is not present in the log. To measure generalization we
use k-fold cross validation. We divide the log into k parts, we discover the model
from k−1 parts (i.e. we hold out one part), and measure the fitness of the discovered
model against the holdout part, and the precision of the discovered model against
the complete log.2 This operation is repeated for every possible holdout part, and the
measures are averaged, leading to a k-fold fitness and a k-fold precision measure. A
k-fold fitness of 1 means that the discovered process model produces traces that are
part of the observed process, even if those traces are not in the log from which the
model was discovered. Similarly, a k-fold precision of one means that the discovered
model does not over-generalize the process. The F-Score computed from k-fold fitness
and k-fold precision provides a single generalization measure.

Complexity refers to how difficult it is to understand a model. Several complexity
metrics have been empirically shown to be (inversely) related to the understandability

2 In the empirical evaluation, we use k = 3 because existing measures of fitness and precision are slow to
compute, making high k values impractical.

4 Augusto et al.

of process models [21]. These and other empirical findings on process model under-
standability are distilled in the seven Process Modeling Guidelines (7PMG) compiled
by Mendling et al. [22] :

G1: Use as few model elements as possible; this guideline relates to the Size of the
process model, which measures the number of nodes.

G2: Minimize the routing paths per element; this guideline relates to the Control-Flow
Complexity (CFC) metric [7], which measures the amount of branching induced
by the split gateways in a process model.

G3: Use one start event for each trigger and one end event for each outcome.
G4: Model as structured as possible; this guideline tells us that for every split gateway

in a process model, there should be a corresponding join gateway, such that the
sub-graph between the split and the join gateway is a single-entry, single-exit
region. This guideline relates to the structuredness metric, i.e. the percentage of
nodes directly located inside a single-entry single-exit fragment. The more nodes
in a process model are located outside such fragments, the lower is the value of
the structuredness metric.

G5: Avoid OR gateways where possible.
G6: Use verb-object activity labels.
G7: Decompose a model with more than 30 elements.

In the empirical evaluation reported later in the article, we include the complexity
metrics that directly relate to guidelines G1, G2 and G4. Guidelines G3 and G5 are
guaranteed by construction by our approach, while guidelines G6 and G7 are not
applicable to our context. Indeed, G6 refers to the labeling style of activities: in our
case, we take the activity labels directly from the event log. G7 only applies to methods
that discover hierarchical process models, while in our case we discover flat models.

In addition to the four quality dimensions, it is natural to expect that a discovered
process model is syntactically and semantically correct. A model is syntactically
correct when all the nodes are on a path from a single start node to a single end
node.3 In other words, there are no disconnected nodes or dangling arcs. A well-
accepted semantic correctness notion is soundness [31]. This notion has been defined
on Workflow nets, and can be adapted to BPMN models as follows. A BPMN model
with one start and one end event is sound if and only if: (i) no task can be enabled
or executed more than once simultaneously (safeness); (ii) any arbitrary task can be
reached from the start event executing a specific sequence of tasks (deadlock-freedom).

2.2 Automated Process Discovery Methods

The α-algorithm [32] is a simple automated process discovery method based on
the concept of Directly-Follows (dependency) Graph (DFG). In the α-algorithm, a
directly-follows dependency (a > b) holds if an event with label a directly precedes an
event with label b in at least one trace. Using this basic relation, three relations are
defined: (i) causality (a→ b) if a > b and b ≯ a; (ii) conflict (a#b) if a ≯ b and b ≯ a;
and (iii) concurrency (a ∥ b) if a > b and b > a. These relations are used to discover a
process model. While appealing due to its simplicity, the α-algorithm is not applicable

3 BPMN allows process models to have multiple start and multiple end events, but such process models
can be re-written as process models with a single start and a single end event, hence we can restrict ourselves
to process models with a single start and a single end event without loss of generality.

Title Suppressed Due to Excessive Length 5

to real-life event logs since it assumes the log to be complete (every possible trace is
present) and it is too sensitive to infrequent behavior.

The Heuristics Miner [36] addresses these limitations and consistently performs
better in terms of accuracy on incomplete and noisy logs [35]. To handle noise, the
Heuristics Miner relies on a relative frequency metric between pairs of event labels,
defined as a⇒ b = (∣a>b∣−∣b>a∣

∣a>b∣+∣b>a∣+1). Whenever this metric falls under a given threshold
for a given pair of event labels (a,b), the directly-follows dependency a > b is removed
from the DFG. The filtered DFG is then used to discover splits and joins, according
to heuristics defined over the frequencies of the outgoing and incoming arcs of each
node.

While Heuristics Miner has been shown to achieve relatively good fitness and
precision in the presence of noise [35], it still outputs spaghetti-like and unsound
process models when applied to large real-life event logs. Fodina [33] is a variant
of Heuristics Miner that avoids certain types of deadlocks produced by Heuristics
Miner. However, when applied to real-life event logs, Fodina produces large and often
unsound models as we show later in the empirical evaluation.

Structured process models are generally more understandable than unstructured
ones [13,14]. Moreover, structured models are sound, provided that the gateways at
the entry and exit of each block match. Given these advantages, several algorithms
have been designed to discover structured process models, represented for example as
process trees [16,6]. A process tree is a tree where each leaf is labeled with an activity
and each internal node is labeled with a control-flow operator: sequence, exclusive
choice, non-exclusive choice, parallelism or iteration. The Inductive miner [17] uses a
divide-and-conquer approach to discover process trees. It first creates a DFG, filters
infrequent directly-follows dependencies, and identifies cuts in the filtered DFG. A cut
is a control-flow dependency along which the log can be bisected. The identification
of cuts is repeated recursively, starting from the most representative one until no more
cuts are found. Once all cuts are identified, the log is split into portions (one per pair
of consecutive cuts) and a process tree is generated from each portion.

The Evolutionary Tree Miner (ETM) [6] is a genetic algorithm that starts by
generating a population of random process trees. At each iteration, it computes an
overall fitness value for each tree in the population and applies mutations to a subset
thereof. The algorithm iterates until a stop criterion is fulfilled, and returns the tree with
highest overall fitness. Molka et al. [23] proposed another genetic discovery algorithm
that produces structured models. This latter algorithm is similar in its principles to
ETM, differing mainly in the set of change operations used to produce mutations.

While the Inductive Miner and ETM achieve high fitness, they over-generalize
the behavior observed in the log whenever the process model to be discovered is un-
structured. In particular, when the Inductive Miner is unable to capture the behavioral
relations in a given fragment of the DFG, it introduces a so-called “flower” structure.
A flower structure involving tasks {a, b, ...} is a control-flow structure that allows
tasks {a, b, ...} to be executed any number of times and in any order, hence leading to
over-generalization.

The Structured Miner [3] addresses this limitation by relaxing the requirement of
always producing a structured process model, in favor of achieving higher accuracy.
Instead of directly discovering a structured model, Structured Miner first applies the
Heuristics Miner to obtain an accurate but potentially unstructured or even unsound
model. Next, it applies the technique to maximally structure the discovered model
proposed in [25–27] and applies heuristics to simplify the model and remove unsound-

6 Augusto et al.

Event
Log

DFG and
Loops Discovery

Concurrency
Discovery Filtering Splits

Discovery
Joins

Discovery
OR-joins

Minimization
BPMN
Model

Fig. 1: Overview of the proposed approach.

ness. However, the block-structuring approach of the Structured Miner often fails to
produce a sound process model when applied to real-life event logs as reported later.

The problem of automated process discovery is partially related to that of mining
patterns from collections of sequences, also known as sequence databases. Classical
sequential pattern mining methods extract patterns corresponding to contiguous sub-
sequences that occur in many sequences of a sequence database [37]. More recently,
algorithms have been proposed [12,29] to mine gapped sequential patterns – allowing
gaps between two successive events of the pattern – and repetitive sequential patterns
– which capture not only subsequences that recur in multiple sequences, but also
subsequences that recur frequently within the same sequence.

In the above approaches, one pattern captures only one subsequence. In other
approaches, a pattern may capture multiple subsequences, including subsequences that
are not observed in the sequence database but are related to observed subsequences.
In other words, the extracted patterns generalize the observed behavior, which makes
these techniques closer to automated process discovery. For example, episodes [20,
24] extend sequential patterns with parallelism by allowing a pattern to incorporate
partial order relations.

The authors of [18] propose a method called Post Sequential Patterns Mining
(PSPM) that takes as input a set of sequential patterns and extracts concurrency
relations between them. In this work, a concurrency relation between sequential
patterns means that those patterns occur together in the same sequences. This notion
of concurrency does not consider the case where the same pattern occurs multiple
times per sequence. A later extension [19] improves this method and proposes a
visual notation, called a ConSP-Graph, to represent the concurrent relations between
sequential patterns.

The work in [8] extends that in [18] by extracting exclusive relations between
sequential patterns, i.e. patterns that do not occur in the same sequences, and propose
a visual graph called an ESP-graph to visually represent such relations. ConSP-
Graphs and ESP-graphs can be seen as simple process models (with sequential and
concurrency relations). However, while the authors of [8] mention the extension of
ConSP-Graphs to a richer set of patterns as an important area of future work, no
work has been done in the area of PSPM to mine graphs that can contain arbitrary
combinations of concurrency, choices, sequential orderings, and loops in a single
graph. This ability to deal with such arbitrary combinations of patterns sets apart
automated process discovery techniques from sequential pattern mining techniques.

3 Approach

Starting from a log, Split Miner produces a BPMN model in six steps (cf. Fig. 1). Like
the Heuristics Miner and Fodina, the first step is to construct the DFG, but unlike these
latter, Split Miner does not immediately filter the DFG. Instead, it analyzes it to detect
self-loops and short-loops (which are known to cause problems in DFG-based process
discovery methods) and to discover concurrency relations between pairs of tasks. In a
DFG, a concurrency relation between two tasks, e.g. a and b, shows up as two arcs:

Title Suppressed Due to Excessive Length 7

one from a to b and another from b to a, meaning that causality and concurrency are
mixed up. To address this issue, whenever a likely concurrency relation between a
and b is discovered, the arcs between these two tasks are pruned from the DFG. The
result is called: pruned DFG (PDFG). In the third step, a filtering algorithm is applied
on the PDFG to strike balanced fitness and precision maintaining low control-flow
complexity. In the fourth step, split gateways are discovered for each task in the filtered
PDFG with more than one outgoing arc. Similarly, in the fifth step, join gateways
are discovered from tasks with multiple incoming arcs. Lastly, if any OR-joins were
discovered, they are removed (whenever possible).

3.1 Directly-Follows Graph and Short-Loops Discovery

Split Miner takes as input an event log defined as follows.

Definition 1 (Event Log) Given a set of events E , an event logL is a multiset of traces
as T , where a trace t ∈ T is a sequence of events t = ⟨e1,e2, . . . ,en⟩, with ei ∈ E ,1 ≤ i ≤ n.
Additionally, each event has a label l ∈ L and it refers to a task executed within a
process, we retrieve the label of an event with the function λ ∶ E → L, using the
notation λ(e) = el .

For the remaining, we assume all the traces of an event log have the same start
event and the same end event. This is guaranteed by a simple pre-processing of the
event log, to be compliant with the third of the 7PMG (Section 2), i.e. “use one start
event for each trigger and one end event for each outcome”.

Given the set of labels L = {a,b,c,d,e, f ,g,h}, a possible log is: L =
{⟨a,b,c,g,e,h⟩10,⟨a,b,c, f ,g,h⟩10,⟨a,b,d,g,e,h⟩10,⟨a,b,d,e,g,h⟩10,⟨a,b,e,c,g,h⟩10,
⟨a,b,e,d,g,h⟩10,⟨a,c,b,e,g,h⟩10,⟨a,c,b, f ,g,h⟩10,⟨a,d,b,e,g,h⟩10,⟨a,d,b, f ,g,h⟩10};
this log contains 10 distinct traces, each of them recorded 10 times.

Starting from a log, we construct a DFG in which each arc is annotated with a
frequency, based on the following definitions.

Definition 2 (Directly-Follows Frequency) Given an event log L, and two events
labels l1, l2 ∈L, the directly-follows frequency between l1 and l2 is ∣l1→ l2∣=∣ {(ei,e j) ∈
E ×E ∣ el

i = l1∧el
j = l2∧∃t ∈L ∣ ∃ex ∈ t[ex = ei∧ ex+1 = e j]]} ∣.

Definition 3 (Directly-Follows Graph) Given an event log L, its Directly-Follows
Graph (DFG) is a directed graph G = (N,E), where N is the non-empty set of nodes4,
for which exists a bijective function l ∶N ↦ L, where nl retrieve the label of n, and E
is the set of edges E = {(a,b) ∈ N ×N ∣ ∣al→ bl∣ > 0}. Moreover, given a node n ∈ N
we use the operator ●n = {(a,b) ∈ E ∣ b = n} and n● = {(a,b) ∈ E ∣ a = n} to retrieve
(respectively) the set of incoming and outgoing edges.

Given the DFG, we then detect self-loops and short-loops (i.e. loops involving
only one and two tasks resp.) since these are known to cause problems when detecting
concurrency [32]. A self-loop exists if a node has an arc towards itself in the DFG:
∣a→ a∣. Short-loops and their frequencies are detected in the log as follows.

Definition 4 (Short-Loop Frequency) Given an event log L, and two events la-
bels l1, l2 ∈ L, we define the number of times a short-loop pattern occurs ∣a↔ b∣ =
∣{(ei,e j,ek) ∈E×E×E ∣ el

i = l1∧el
j = l2∧el

k = l1∧∃t ∈L[∃ex ∈ t[ex = ei∧ex+1 = e j∧ex+2 =

4 Each node of the graph represents a task.

8 Augusto et al.

a b

c

d

e

f

g h
60

20

20

20

20
40

20

20
2010

20

10 20

10

10

30 20

30

20
80

(a) Initial state.

a b

e

f

c

d

g h
60

20

20

40

20

20

10

20

10

20

30 80

(b) After pruning.

a b f

e

d

c

g h60

20

20

40

20

20
20

20

30

80

(c) After filtering.

Fig. 2: Processing of the directly-follows graph.

ek]}∣, with abuse of notation we use ∣a→ b∣ instead of ∣al→ bl∣ and ∣a↔ b∣ instead of
∣al↔ bl∣.

Given two tasks a and b, a short-loop (a↻ b) exists iff the following conditions
hold:

∣a→ a∣ = 0 ∧ ∣b→ b∣ = 0 (1)

∣a↔ b∣+ ∣b↔ a∣ ≠ 0 (2)

Condition 1 guarantees that neither a nor b are in a self-loop, otherwise the short-
loop evaluation may not be reliable. Indeed, if we consider a model containing a
concurrency between a self-loop a and a normal task b, traces recorded during the
execution of the process may contain the sub-trace ⟨a,b,a⟩ (which also characterize
a↻ b). Discarding this latter case fulfilling Condition 1, we use Condition 2 to ensure
a↻ b.

Self-loop are trivially removed from the DFG and restored in the output BPMN
model at the end. Fig. 2a shows the DFG built from the example event log L. In this
log, there are no self-loops nor short-loops.

3.2 Concurrency Discovery

Given a DFG and two tasks a and b, such that neither a nor b is a self-loop5, we
postulate a and b are concurrent (a∥b) iff three conditions hold:

∣a→ b∣ > 0 ∧ ∣b→ a∣ > 0 (3)

∣a↔ b∣+ ∣b↔ a∣ = 0 (4)

∣∣a→ b∣− ∣b→ a∣∣
∣a→ b∣+ ∣b→ a∣

< ε (ε ∈ [0,1]) (5)

Condition 3 captures the basic requirement for a∥b. Indeed, the existence of edges
e1 = (a,b) and e2 = (b,a) entails that a and b can occur in any order. However, this is
not sufficient to postulate concurrency since this relation may hold in three cases: (i)
a and b form a short-loop; (ii) a and b are concurrent; or (iii) e1 or e2 occurs highly
infrequently and can thus be ignored. Case (i) is avoided by Condition 4. Since being
this latter the opposite of Condition 2, it guarantees ¬a↻ b. This leaves us with

5 We favor self-loops over concurrency.

Title Suppressed Due to Excessive Length 9

cases (ii) and (iii). We use Condition 5 to disambiguate between the two cases: if the
condition is true we assume a∥b, otherwise we fall into case (iii). The intuition behind
Condition 5 is that two tasks are concurrent the values of ∣a→ b∣ and ∣b→ a∣ should
be as close as possible, i.e. both interleavings are observed with similar frequency.
Therefore, the smaller is the value of ε the more balanced have to be the concurrency
relations in order to be captured. Reciprocally, setting ε to 1 would catch all the
possible concurrency relations.

Whenever we find a∥b, we remove e1 and e2 from E, since there is no causality
but instead there is concurrency. On the other hand, if we find that either e1 or e2
represents infrequent behavior we remove the least frequent of the two edges. The
output of this step is a pruned DFG.

Definition 5 (Pruned DFG) Given a DFG G = (N,E), a Pruned DFG (PDFG) is
a connected graph Gp = (N,Ep), where Ep is the set of edges Ep = E ∖{(a,b) ∈ E ∣
a∥b∨(¬a∥b∧(b,a) ∈ E ∧ ∣a→ b∣ < ∣b→ a∣)}.

In the example in Fig. 2a, we can identify four possible cases of concurrency:
(b,c), (b,d), (d,e), (e,g). Setting ε = 0.2, we capture the following concurrency
relations: b∥c, b∥d, d∥e, e∥g. The resulting PDFG is shown in Fig. 2b.

3.3 Filtering

In order to derive a sound, simple, and accurate BPMN process model from a PDFG,
the latter must satisfy three properties. First, each node of the PDFG must be on a path
from the single start node (source) to the single end node (sink). This property is nec-
essary to ensure a sound process model (no deadlocks and no lack of synchronization).
Second, for each node, its path from source to sink must be the one having maximum
capacity. In our context, the capacity of a path is the frequency of the least frequent
edge of the path. This property is meant to maximize fitness, since the capacity of a
path matches the number of traces that can be replayed on that path. Third, the number
of edges of the PDFG must be minimal. This property minimizes CFC and maximizes
precision, since the number of edges is proportional to the branching factor (used to
calculate the CFC) and to the amount of allowed behavior.

To satisfy these three properties, we designed a variant of Dijkstra’s shortest path
algorithm [11]. The main differences between Dijkstra’s algorithm and ours are the
following: (i) during the exploration of the graph we do not propagate the length of
the paths, but their capacities; (ii) Dijkstra solves a problem of minimization, whilst
we solve a problem of maximization. Additionally, since we want to guarantee that
each node is reachable from the source and can reach the sink (i.e. on a path from
source to sink), we perform a double breadth-first exploration: forward (source to sink)
and backward (sink to source). During the forward exploration, for each node of the
PDFG we discover its maximum source-to-node capacity (forward capacity), and its
incoming edge granting such forward capacity (best incoming edge). Similarly, during
the backward exploration, we discover maximum node-to-sink capacities (backward
capacities), and outgoing edges (best outgoing edge). Through this algorithm we
satisfy the first and second property, and we set a limit to the maximum number of
edges retained in our PDFG, which is always less than 2 ∣T ∣ (i.e. each node will have
at most one incoming and one outgoing edge). However, the limited number of edges
may reduce the amount of behaviour that the final model can replay, and consequently
its fitness. To strike a trade-off between fitness and precision, we introduce a frequency

10 Augusto et al.

threshold which let the user balance the two metrics. Precisely, we compute the η

percentile over the frequencies of the most frequent incoming and outgoing edges of
each node, and we retain those edges with a frequency exceeding the threshold. It
is important to notice, that the percentile is not taken over the frequencies of all the
edges in Ep since otherwise we would simply retain η percentage of all the edges.

Algorithm 1 shows in details how we achieve the objectives listed above. Given
as input a PDFG Gp = (T,Ep) and a percentile value η , we detect the source (i) and
the sink (o) of Gp. We initialize the forward and backward capacities of each node
to 0, except for the source and the sink, which are supposed infinite (line 3 to 13).
Simultaneously, for each node we collect the highest frequency among its incoming
edges (fi) and the highest frequency among its outgoing edges (fo), which are used to
estimate the η percentile (line 14).

Algorithm 1: Generate Filtered PDFG
input : PDFG Gp = (T,Ep), percentile value η

output : Filtered PDFG G f = (i,o,T,E f)

i← the source node of Gp;1
o← the sink node of Gp;2
Create a map C f ∶ T → Z+;3
Create a map Cb ∶ T → Z+;4
Create a set F ←∅;5
C f [i]← inf;6
Cb[o]← inf;7
for t ∈ T do8

C f [t]← 0;9
Cb[t]← 0;10
fi ← the highest frequency of the incoming edges of t;11
fo ← the highest frequency of the outgoing edges of t;12
add fi and fo to F ;13

fth ← the η percentile on the values in F ;14

Create a map Ei ∶ T → Ep;15
Create a map Eo ∶ T → Ep;16
DiscoverBestIncomingEdges(Gp, i, C f , Ei);17
DiscoverBestOutgoingEdges(Gp, o, Cb, Eo);18

Create a set E f ←∅;19
for e ∈ Ep do20

if (∃te ∣ Ei[te] = e∨Eo[te] = e)∨(fe > fth) then add e to E f ;21

return G f = (T,E f);22

After the initialization, we perform the breadth-first forward exploration of Gp
starting from the source i. We use a queue (Q) in order to store the nodes to explore,
which at the beginning contains only i, and a set (U) for the unexplored nodes contain-
ing all the nodes in T (except for i). Finally, the map Ei will store the best incoming
edge of each visited node.

Using a FIFO6 policy, we start the exploration of the nodes in Q. When a node p
is removed from Q, we analyse its outgoing edges (line 7) and their targets (successors
of p). Specifically, for each successor n we evaluate the possible maximum capacity
(Cmax), line 10, that is the minimum between the capacity of its predecessor p (C f [p])
and the frequency of the incoming edge (fe). Successively, we update the best incoming

6 First-in first-out.

Title Suppressed Due to Excessive Length 11

Algorithm 2: Discover Best Incoming Edges
input : PDFG Gp = (T,Ep), Source i, Forward Capacities Map C f , Best Incoming Edges Map Ei

Create a queue Q;1
Create a set U ← T ∖{i};2
Add i to Q;3
while Q ≠∅ do4

p← first node in Q;5
remove p from Q;6
for e ∈ p● do7

n← target of e;8
fe ← frequency of e;9
Cmax ←Min(C f [p], fe);10
if Cmax >C f [n] then11

C f [n]←Cmax;12
Ei[n]← e;13
if n ∉ Q∪U then add n to U ;14

if n ∈U then15
remove n from U ;16
add n to Q;17

Algorithm 3: Discover Best Outgoing Edges
input : PDFG Gp = (T,Ep), Sink o, Backward Capacities Map Cb, Best Outgoing Edges Map Eo

Add o to Q;1
U ← T ∖{o};2
while Q ≠∅ do3

n← first node in Q;4
remove n from Q;5
for e ∈ ●n do6

p← source of e;7
fe ← frequency of e;8
Cmax ←Min(Cb[n], fe);9
if Cmax >Cb[p] then10

Cb[p]←Cmax;11
Eo[p]← e;12
if p ∉ Q∪U then add p to U ;13

if p ∈U then14
remove p from U ;15
add p to Q;16

edge of n (Ei[n]) and its current maximum capacity (C f [n]) if Cmax is greater than
C f [n], line 11.

Since a change of C f [n] may entail a change of n successors’ maximum capacities,
we mark n as unexplored if previously explored (n is added to U , line 14). Finally, if
n is unexplored, we add it to the tail of Q (line 17). We then perform the backward
exploration starting from o (line 1 to 16). The algorithm concludes retaining the best
incoming and outgoing edges, and those with a frequency above the threshold fth
(line 21).

Though the third property (i.e. ∣ E f ∣< 2 ∣ T ∣) can only be guaranteed for η = 1, the
usage of η is meant to balance fitness and precision. Since, the lower is the value of
η the more edges may be retained, resulting in a higher fitness at the cost of lower
precision and higher control-flow complexity.

12 Augusto et al.

Node C f Ei Cb Eo
a ∞ - 20 (a,b)
b 60 (a,b) 20 (b,e)
c 20 (a,c) 20 (c,g)
d 20 (a,d) 20 (d,g)
e 40 (b,e) 20 (e,h)
f 20 (b, f) 30 (f ,g)
g 20 (f ,g) 80 (g,h)
h 20 (g,h) ∞ -

Table 1: Filtering algorithm example.

Figure 2c shows the output of the filtering algorithm when applied to the PDFG
previously obtained (Figure 2b). The results of the forward and backward explorations
(mappings C f , Ei, and Cb, Eo) are shown in Table 1. As consequence of retaining the
best incoming and outgoing edges for each node, we would drop edges: (e,c) and
(c, f). These latter would be removed independently of the value assigned to η .

3.4 Filtered PDFG to BPMN Process Model

Once completed the processing of the DFG, we can start the conversion from the
filtered PDFG to the BPMN process model.

Definition 6 (BPMN process model) A BPMN process model (or BPMN model) is
a connected graphM = (i,o,T,G,Em), where i is the start event, o is the end event,
T is a non-empty set of tasks, G = G+ ∪G× ∪G○ is the union of the set of AND
gateways (G+), the set of XOR gateways (G×) and the set of OR gateways (G○), and
Em ⊆ (T ∪G∪{i})×(T ∪G∪{o}) is the set of edges. Further, given g ∈G, g is a split
gateway if it has more than one outgoing edge, i.e. ∣ g● ∣> 1, or a join gateway if it has
more than one incoming edge, i.e. ∣ ●g ∣> 1.

Algorithm 4 highlights the main parts of the conversion. Specifically, we create a
start and an end event (lines 1 and 2). Then, we initialize the set of tasks and edges,
respectively as the set of nodes of the filtered PDFG, and as the set of the edges of
the filtered PDFG plus two new edges: one connecting the start event with the former
source of the DFG, and one connecting the former sink of the DFG to the end event
(line 6). Lastly, an empty set of gateways is created, which will be filled through the
following three steps: split discovery, join discovery and ORs replacement. Figure 3a
shows the initialization of the BPMN model obtained from the filtered PDFG of
Figure 2c.

3.5 Splits Discovery

To generate the split gateways, we rely on the concurrency relations identified during
the second step of our approach (section 3.2). The splits discovery is based on the idea
that tasks directly following (successors of) the same split gateway are concurrent to
the same set of tasks which do not directly follow such gateway. With a reference to
Figure 4b, being tasks c and d successors of gateway and1, they are both concurrent
to tasks e, f , g, due to gateway and3 (i.e. c∥e, c∥ f , c∥g, and d∥e, d∥ f , d∥g). Sim-
ilarly, being tasks a and b successors of gateway xor1, they share same empty set

Title Suppressed Due to Excessive Length 13we_start

A C

D

B F

G H

E

(a) Initial state.we_nojoins

A C

D

B F

G H

E

(b) After splits discovery.

we_joins

A C

D

B F

G H

E

(c) After joins discovery.

Fig. 3: Processing of the BPMN model.

Algorithm 4: Filtered PDFG to BPMN process model
input : Filtered PDFG G f = (N,E f)

output : BPMN process modelM = (i,o,G,T,Em)

Create a start event i;1
Create an end event o;2
Create a set T ← N;3
s← t ∈ T ∣ ∣●t∣ = 0;4
e← t ∈ T ∣ ∣t●∣ = 0;5
Create a set Em ← E f ∪{(i,s),(e,o)};6
Create a set G←∅;7
Create a BPMN process modelM← (i,o,T,G,Em);8
DiscoverSplits(M);9
DiscoverJoins(M);10
ReplaceORs(M);11
returnM;12

Algorithm 5: Discover Splits
input : BPMN process modelM = (i,o,T,G,Em)

for t ∈ T do1
if ∣ t● ∣> 1 then2

Create a set S← d-successors of t;3
Create a map C ∶ S→ 2S;4
Create a map F ∶ S→ 2S;5
for s1 ∈ S do6

C[s1]← {s1};7
F[s1]←∅;8
for s2 ∈ S do9

if (s2 ≠ s1 ∧ s2∥s1) then add s2 to F[s1];10

remove from Em the outgoing edges of t ;11
while ∣S∣ > 1 do12

discoverXORsplits(M,S,C,F);13
discoverANDsplits(M,S,C,F);14

s← unique element of S;15
add an edge from t to s;16

14 Augusto et al.

Algorithm 6: Discover XOR-splits
input : BPMNM, Set S, Map C, Map F

do1
Create a set X ←∅;2
for s1 ∈ S do3

Create a set Cu ←C[s1];4
for s2 ∈ S do5

if F[s1] = F[s2]∧ s1 ≠ s2 then6
add s2 to X ;7
Cu ←Cu ∪C[s2];8

if X ≠∅ then9
add s1 to X ;10
break;11

if X ≠∅ then12
Create an XOR gateway g×;13
add g× to G×;14
for s ∈ X do15

add an edge from g× to s;16
remove s from S;17

add g× to S;18
F[g×]← F[s1];19
C[g×]←Cu;20

while X ≠∅ ;21

Algorithm 7: Discover AND-splits
input : BPMNM, Set S, Map C, Map F

do1
Create a set A←∅;2
for s1 ∈ S do3

Create a set Cu ←C[s1];4
Create a set Fi ← F[s1];5
Create a set CFs1 ←C[s1]∪F[s1];6
for s2 ∈ S do7

Create a set CFs2 ←C[s2]∪F[s2];8
if CFs1 = CFs2 ∧ s1 ≠ s2 then9

add s2 to A;10
Cu ←Cu ∪C[s2];11
Fi ← Fi ∩F[s2];12

if A ≠∅ then13
add s1 to A;14
break;15

if A ≠∅ then16
Create an AND gateway g+;17
add g+ to G+;18
for s ∈ A do19

add an edge from g+ to s;20
remove s from S;21

add g+ to S;22
C[g+]←Cu;23
F[g+]← Fi;24

while A ≠∅ ;25

Title Suppressed Due to Excessive Length 15
hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(a) Before

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(b) After

Fig. 4: Splits discovery example.

of concurrent relations, because a, b and all the other tasks are mutually exclusive
due to gateway xor3. Knowing which tasks are successors of the same gateway, we
can identify the gateway’s type by checking whether its successors are concurrent or
mutually exclusive, e.g. c and d are concurrent (i.e. c∥d), whilst a and b are mutually
exclusive (i.e. ¬ a∥b).

Before explaining in details how we discover a hierarchy of splits, we need to
define the following concepts.

Definition 7 (Split-task) Given a BPMN modelM = (i,o,T,G,Em), a split-task is a
task t ∈ T , such that ∣t●∣ > 1.7

Definition 8 (P-successor of a Split-task) Given a BPMN model M =
(i,o,T,G,Em) and a split-task t ∈ T , a p-successor of t is a task or gateway s ∈ T ∪G
such that there exists a path from t to s. Further, if s ∈ T we say s is a t-successor,
whilst if s ∈G, s is a g-successor.

Definition 9 (D-successor of a Split-task) Given a BPMN model M =
(i,o,T,G,Em) and a split-task t ∈T , a d-successor of t is a task s ∈T ∪G such that there
exists an edge from t to s. A d-successor is always a p-successor, but not vice-versa.

Definition 10 (Successor Cover) Given a BPMN modelM = (i,o,T,G,Em), a split-
task t ∈ T and a p-successor s of t, the cover of s is the subset Cs of the t-successors of
t such that for each c ∈Cs there exists a path from t to c that visits s. The following
properties are always true: s ∈Cs and Cs∩G =∅.

Definition 11 (Successor Future) Given a BPMN modelM = (i,o,T,G,Em), a split-
task t ∈ T and a p-successor s, the future of s is the subset Fs of the t-successors of t
such that f ∈ F iff f ∥c,∀c ∈Cs.

To describe how Algorithm 5 discovers a hierarchy of splits we use the example in
Figure 4, assuming the concurrency relations showed in Figure 4b. Given as input a
BPMN model to Algorithm 5, we look for split-tasks (line 1), e.g. z (Figure 4a). We
retrieve the d-successors of z (line 3), and for each d-successor, e.g. e, we detect its
cover and its future (maps C[s] and F[s], lines 4 and 5). In our example, the cover
and the future of e are the sets {e} and {c,d, f}, respectively (since we assumed e∥c,

7 A split-task represents a syntactical error in the BPMN model.

16 Augusto et al.

D-successor C F
a a -
b b -
c c d, e, f, g
d d c, e, f, g
e e f, c, d
f f e, c, d
g g c, d

xor1 a, b -
and1 c, d e, f, g

e e f, c, d
f f e, c, d
g g c, d

xor1 a, b -
and1 c, d e, f, g
and2 e, f c, d

g g c, d
xor1 a, b -
and1 c, d e, f, g
xor2 e, f, g c, d
xor1 a, b -
and3 c, d, e, f, g -
xor3 a, b, c, d, e, f, g -

Table 2: Splits discovery example.

e∥d and e∥ f). Table 2 shows how the sets C[s] and F[s] evolves during the execution
of the algorithm. After computing cover and future of each d-successor (line 6 to 10),
we use them to discover XOR-splits and AND-splits in two phases (lines 13 and 14).
In the first phase – Algorithm 6 – we look for all the d-successors sharing the same
future (line 6). Whenever we find any (line 9), we introduce an XOR-split proceeding
these p-successors, which replaces them as d-successor of z. This gateway has as
future the same shared future of the selected d-successors, and as cover the union of
their covers. This is in-line with our initial idea, since d-successors having the same
future are successors of the same gateway and are not concurrent. Otherwise, if they
were concurrent, they would be in each other futures and their futures would differ.8

We repeat this operation until no further XOR-splits are identified (line 21). Once
all possible XOR-splits are discovered, we move toward the second phase, i.e. the
discovery of AND-splits – Algorithm 7.

Unlike the XOR-splits, to identify AND-splits we cannot rely only on the d-
successors’ futures. Instead, we select the d-successors having the same set of nodes
resulting from the union of their cover and future (line 9 to 15). Then, an AND-split is
introduced before these d-successors. This AND-split has as future the intersection of
the futures of the set of the selected d-successors and as cover the union of their covers.
Likewise for the XOR-split, the AND-split becomes a new d-successor replacing the
p-successors that will now belong to its cover. The discovery of the AND-splits is still
in-line with our initial idea. Indeed, given a set of candidate AND-split successors (i.e.
d-successors having a common subset of their futures), and removing the common
subset from their futures, the genuine AND-split successors will be those for which
their cover is contained in the future of each other candidate successor of the AND-
split (i.e. successors of the same AND-split must be concurrent each others). In our
example (Table 2), c and d have as shared future the subset Fs = {e, f ,g}. If we remove

8 This happens because by construction a task cannot belong to its own future.

Title Suppressed Due to Excessive Length 17

this subset, we would see that the cover of c matches the future of d and vice-versa
(i.e. c∥d and d∥c). The fact that we look for d-successors having the same union of
their cover and future is a mere computational optimization, since by construction
the intersection of the covers of two different d-successors is always empty, and the
intersection between the cover and the future of a d-successor is always empty.

We repeat Algorithms 6 and 7 until the split-task becomes a normal task, having
just one d-successor (Algorithm 5, line 12). Figure 3b shows the output of this step
for our working example, when we give as input to Algorithm 5 the BPMN models
showed in Figure 3a.

3.6 Joins Discovery

Once all the split gateways have been placed, we can discover the join gateways.
To do so, we rely on the Refined Process Structure Tree (RPST) [28] of the current
BPMN model. The RPST of a process model is a tree where its nodes represent
the single-entry single-exit (SESE) fragments of the process model and its edges
denote a containment relation between SESE fragments. Specifically, the children of a
SESE fragment are its directly contained SESE fragments, whilst SESE fragments on
different branches of the tree are disjoint. Since each SESE fragment is a subgraph
of the process model, and the partition of the process model into SESE fragments is
made in terms of edges, a single node (of the process model) can be shared by multiple
SESE fragments. Further, each SESE fragment can be of one of the four types: a
trivial fragment consists of a single edge; a polygon is a sequence of fragments; a
bond is a fragment where all the children fragments share two common nodes, one
being the entry and the other being the exit of the bond; any other fragment is a rigid.
Lastly, each SESE can be classified as homogeneous if the gateways it contains (and
are not contained in any of its SESE children) are all of the same type (e.g. only
XOR-gateways), or heterogeneous if such gateways have different types.

To explain Algorithm 8, we need to introduce the concept of loop-join.

Definition 12 (Loop-edge and Loop-joins) Given a BPMN model M =
(i,o,T,G,Em), and an edge e = (a,b) ∈ Em, e is a loop-edge iff a is a node topo-
logically deeper than b and there exists a path from b to a. Further, if ∣●b∣ > 1, we refer
to b as loop-join.

The first step of Algorithm 8 is to generate the RPST of the input BPMN model.
Then, we add all the RPST nodes to a queue (Q) ordering the nodes bottom-up, i.e.
leaves to root (line 2), and we analyse each of these nodes (which are the SESE
fragments composing the BPMN model). Precisely, for each task (t) having multiple
incoming edges within the SESE fragment, we create a new join gateway (g) and we
redirect all the incoming edges of t to g, line 12. Finally, we set the type of g according
to the following rules: if g is a loop-join, it is turned into a XOR; else if t is within a
homogeneous SESE fragment we match the type of the homogeneous SESE fragment,
otherwise the type is set to OR. These rules guarantee soundness for acyclic models
and deadlock-freedom for cyclic models as discussed below.

Figure 5 shows how our approach works for bonds (Fig. 5a), for homogeneous
rigids (Fig. 5b), and for all other cases, i.e. heterogeneous rigid (Fig. 5c).

Considering the working example in Fig. 3b, we detect three joins. The first one
is the XOR-join at the exit of the bond containing tasks c, d and g. Being the entry
of this bond an XOR-split, the bond is XOR-homogeneous, so that the type of the

18 Augusto et al.

Algorithm 8: Discover Joins
input : BPMN process modelM = (i,o,T,G,Em)

generate the RPST fromM;1
Create a queue Q← nodes of the RPST bottom-up ordered;2
while Q ≠∅ do3

n← first node in Q;4
remove n from Q;5
Create a set Tn ← tasks composing n;6
Create a set En ← edges composing n;7
for t ∈ Tn do8

if ∣ ● t ∩En ∣> 1 then9
create a gateway g;10
add an edge from g to t;11
for e ∈ ● t ∩En do set target of e to g;12
if ●g contains backedges then13

set the type of g to XOR;14
else15

if n is homogeneous then16
set the type of g equal to the type of n;17

else18
set the type of g to OR;19

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(a) Bond.

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(b) Homogeneous Rigid.

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(c) Generic case.

Fig. 5: Joins discovery examples.

joins is set to XOR. The remaining two joins are within the parent SESE fragment of
the bond, which is a heterogeneous rigid, hence, we use two OR-joins. The resulting
model is shown in Fig. 3c.

3.7 OR-joins Minimization

The approach described in Section 3.6 avoids the placement of trivial OR-joins within
bonds and homogeneous rigids, but it does not prevent an abuse of OR-joins in case of
heterogeneous rigids. Since we aim to be compliant with the 7PMG [22] (Section 2),
according to the fifth guideline, we should avoid the use of OR gateways where
possible. To achieve this goal, we designed an algorithm able to minimize the use of
the OR-joins opportunely replacing the trivial ones9 with XOR or AND joins. Since
the algorithm is centred on the concept of minimal dominator, we introduce it formally.

9 An OR-join is said trivial when its semantic is equivalent to the semantic of an XOR or AND join.

Title Suppressed Due to Excessive Length 19orjoins_max

A

C

B

H

F

GE

D

(a) Before.orjoins_min

A

C

B

H

F

GE

D

(b) After.

Fig. 6: OR-joins minimization example.

Definition 13 (Minimal Dominator) Given a BPMN modelM = (i,o,T,G,Em), an
OR-join j○ ∈G○, and a split gateway d ∈G, d is a dominator of j○ iff all the paths from
i to j○ visit d. Furthermore, d is the minimal dominator of j○ iff none of the paths
from d to j○ visits other dominators of j○.

Algorithm 9: Check OR-join Semantic
input : A BPMN modelM = (i,o,T,G,Em), Gateway j○ ∈ G○

output : Semantic of j○

d← minimal dominator of j○;1
Create a set Gs ← split gateways in any path from d to j○;2
Create a set Es ← outgoing edges of all the gateways in Gs;3
Create a map T ∶ Es → 2● j○ ;4
semantic← null;5

for e ≡ (gs,x) ∈ Es do6
T [e]← {ei j ∈ ● j○ ∣ ∃ a path from x to ei j};7
if T [e] =∅∧ semanticOf(gs) = XOR then semantic = XOR;8

for g ∈ Gs do9
for e1 ∈ g● do10

for e2 ∈ g● do11
I← T [e1]∩T [e2];12
S1 ← T [e1]∖ I;13
S2 ← T [e2]∖ I;14
if S1 ≠∅∧S2 ≠∅ then15

if semantic ! = null ∧ semantic ! = semanticOf(g) then16
return OR;17

else18
semantic← semanticOf(g);19

return semantic;20

The procedure for the OR-joins minimization detects the trivial OR-joins of the
input BPMN model, and replaces them with XOR or AND joins according to their se-
mantics (proof in Section 4). Figure 6 shows an example of the OR-joins minimization.
We describe the idea behind this procedure before presenting the algorithm.

20 Augusto et al.

Given a BPMN modelM = (i,o,T,G,Em), an OR-join j○, and its minimal domi-
nator d ∈G, we know that all tokens that may arrive to one or more incoming edge of
j○ (incoming tokens) are generated by d.orjoins_or1

or_3D

g_2

g_1 or_1

or_2

1
1

22

(a) Replacing of OR1 and OR2.
orjoins_or3

or_3D

g_2

g_1 or_1

or_2

3

4

3

4

3

4

3,4

3,4

(b) Replacing of OR3.
orjoins_or3_or

or_3D

g_2

g_1 or_1

or_2

3

4

3

4

3

4

3,4

3,4

(c) Non-trivial OR3.

Fig. 7: OR-joins minimization algorithm.

By checking the semantic of all the split gateways visited by the incoming tokens
in all the paths from d to j○, we identify how the incoming tokens split (split relations),
i.e. mutually exclusive or concurrently. Finally, if the split relations between the
incoming tokens of j○ are all the same, j○ is a trivial OR-join, and it can be replaced
with an XOR-join if the split relations are of mutually exclusive type or an AND-join if
concurrent. Otherwise, the OR-join is not trivial, and its replacement must be handled
differently. Algorithm 9 shows in details how we check the semantic of an OR-join, to
decide if we can replace it. Given a BPMN modelM = (i,o,T,G,Em) and an OR-join
j○, we retrieve the minimal dominator of j○ (d, line 1). We create a set (Gs) containing
all the split gateways visited on the paths from d to j○; and a set (Es) containing all
the outgoing edges of the split gateways in Gs. Then, for each edge e ≡ (gs,x) ∈ Es, we
initialize a set (T [e]) containing the edges ei j ∈ ● j○ such that there exists a path from x
to ei j (i.e. T [e] contains the incoming edges of j○ that may receive a token from e).
During this initialization, we may find an empty set T [e]. In such case, if gs (source
of e) is an XOR-split, the empty set T [e] indicates that an incoming token of j○ may
escape on gs from e. Therefore, since there exists a case where j○ does not receive a
token on one of its incoming edges, j○ cannot be a trivial AND-join. We record this
occurrence setting the possible trivial semantic of the OR-join as exclusive (XOR,
line 8). Initialized the sets T [e], we can check the split relations between the incoming

Title Suppressed Due to Excessive Length 21

tokens of j○. Precisely, for each split gateway g ∈Gs, and for each pair of its outgoing
edges (e1 and e2, lines 9 to 11), we compute the intersection of T [e1] and T [e2]. This
intersection (I) contains the edges of ● j○ that may receive incoming tokens either
from e1 or e2 (i.e. incoming tokens for the edges in I do not split between e1 and
e2). By removing I from T [e1] and T [e2] (sets S1 and S2, lines 13 and 14), we detect
the incoming tokens that split between e1 and e2, i.e. S1 (S2) contains the incoming
edges of j○ that cannot receive tokens from e2 (e1). If S1 and S2 are both not empty,
we identified a split relation between the incoming tokens of the edges in S1 and
the incoming tokens of the edges in S2. Consequently, the incoming tokens that split
between e1 and e2 may arrive to different incoming edges of j○ with the same semantic
of gs (i.e. the gateway where they split). Therefore, j○ is trivial only if all the incoming
tokens match that semantic (line 16). Figure 7, shows graphically how Algorithm 9
works on each OR-join of the model in Figure 6a. Specifically, Figure 7a highlights
where the incoming tokens of the OR-join OR1 split. The minimal dominator of OR1
(as well for OR2 and OR3) is the XOR-gateway D. By running Algorithm 9 on OR1,
we detect that the two incoming tokens (namely 1 and 2) split only on D. Being the
semantic of D exclusive, we can replace OR1 with an XOR-join. The semantic check
for OR2 is equivalent to the one of OR1. For OR3 (Figure 7b), its incoming tokens
(namely 3 and 4) may split on g1 and g2, but they do not split on D. Since g1 and g2
are both AND-splits, we can replace OR3 with and AND-split. In such example, all
three OR-joins were trivial. Differently, if g2 is an XOR-split (figure 7c), OR1 and
OR2 would still be replaced with XOR-joins, whilst OR3 would remain an OR-join.
This would happen because the incoming tokens of OR3 split on g2 (now XOR) and
on g1 (still AND), meaning that their semantics may be either exclusive or concurrent,
according to where they would split during the execution of the process model (either
on g1 or g2).

3.8 Complexity

Let n be the number of events in the log and m be the number of tasks (distinct nodes of
the DFG). The DFG construction is in O(n), since we sequentially read each event and
generate the respective node in the graph, simultaneously incrementing the directly-
follows and short-loop frequencies. The self-loops discovery is linear on the number
of nodes of the DFG, hence in O(m). The short-loops discovery is done on pairs of
tasks, so this step is performed in O(m2). The filtering complexity is dominated by
the forward (backward) exploration. It explores each node a number of times equal at
most to the number of edges of the graph, and for each node exploration it loops on
the outgoing (incoming) edges. In the worst scenario, the maximum number of edges
is equal to m2 (e.g. an edge for each pair of nodes), consequently, the filtering is in
O(m4). The split discovery is in O(m4), because we may run Algorithm 5 for each
node, which executes m times Algorithm 6 and 7, and these latter have two nested
loops on m. The join discovery complexity is dominated by the three nested loops:
the one on the number of nodes of the RPST, the one on the number of tasks, and
the one on the number of edges. Since the RPST contains a number of nodes equal
at most to the number of edges of the model, the join discovery is in O(m5). For
the OR-minimization, we run Algorithm 9 for each OR-join – m times, i.e. one join
for each task. The complexity of Algorithm 9 is dominated by its three nested loops.
The outer loop is on the number of split gateways – bound by m, i.e. one split for
each task –, whilst the two inner loops are on the number of edges. Therefore, the
OR-minimization is in O(m6). We can conclude that Split Miner is in O(n+m6).

22 Augusto et al.

4 Semantic Properties of the Discovered Model

In this section, we provide formal proofs of some semantic properties of the BPMN
process model discovered by Split Miner. Precisely, we show that in the case of acyclic
BPMN process models, Split Miner guarantees soundness and the absence of any
trivial OR-joins. Moreover, for cyclic BPMN process models, it is not possible to
guarantee the soundness, but only deadlock-freedom. This latter result is ensured by
the semantic of the OR-joins [34].

In the following, we refer to the BPMN process model as workflow graph.

Definition 4.1 (Workflow graphs)
A workflow graph is a triple G ∶= (V,E, l), where (V,E) is a finite directed graph
consisting of a set V of nodes and a set E ⊆V ×V of edges, and l ∶V → {AND,XOR,OR}
is a partial mapping such that:
1. there is exactly one source node, where a node v ∈V is a source if and only if it

has exactly one outgoing edge and no incoming edges,
2. there is at least one sink node, where a node v ∈V is a sink if and only if it has

exactly one incoming edge and no outgoing edges,
3. If l(v), v ∈V , is defined, then v is neither the source nor a sink,
4. If v ∈V is a gateway, then l(v) is defined, and
5. every node v ∈V is on a directed path from the source to some sink. ⌟

We chose this formalism to ease the readability of the proofs and their symbolism.
It is important to notice that by definition a workflow graph G ∶= (V,E, l) is equivalent
to a BPMN process modelM = (i,o,T,G,Em). Where {i}∪{o}∪T ∪G ≡V , Em ≡E, i
and o are the only source and sink of the workflow graph, and the type of the gateways
is identified by the function l.

4.1 Preliminaries

Let G ∶= (V,E, l) be a workflow graph. A state of G is a mapping s ∶ E →N0.10

Definition 4.2 (Semantics of workflow graphs)
A state transition of a workflow graph G ∶= (V,E, l) is a triple (s1,v,s2), also written
as s1[v⟩s2, where s1 and s2 are states of G, v ∈V , and one of these three conditions
holds:

1. l(v) /∈ {XOR,OR} and

s2(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1(e)+1 e ∈ E is an outgoing edge of v
s1(e)−1 e ∈ E is an incoming edge of v
s1(e) otherwise.

2. l(v) = XOR and there exists an incoming edge e1 ∈ E of v and an outgoing edge
e2 ∈ E of v such that:

s2(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1(e)+1 e ∈ E and e = e2

s1(e)−1 e ∈ E and e = e1

s1(e) otherwise.
3. l(v) = OR for each edge e′ ∈ E and each incoming edge e ∈ E of v such that

s1(e′) ≥ 1 and s1(e) = 0 there is no directed path from e′ to e, and there exists a

10 By N0, we denote the set of all natural numbers including zero.

Title Suppressed Due to Excessive Length 23

nonempty set F of outgoing edges of v such that:

s2(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s1(e)+1 e ∈ F
s1(e)−1 e ∈ E is an incoming edge of v such that s1(e) ≥ 1
s1(e) otherwise.

⌟

Let e be the only outgoing edge of the source of a workflow graph G ∶= (V,E, l).
Then, state s of G for which it holds that s(e) = 1 and for every e′ ∈ E such that
e′ ≠ e it holds that s(e′) = 0 is the initial state of G. Let s0 be the initial state of G. A
state s is a reachable state of G if and only if s = s0 or there is a sequence of nodes
σ ∶= ⟨v1, . . . ,vn⟩ ∈V∗, n ∈N, such that for every position i of σ it holds that si−1[vi⟩si is
a state transition of G, and s = sn. A state s is a final state of G if and only if for every
v ∈V there exists no state s′ of G such that (s,v,s′) is a state transition of G. A final
state s of G is a deadlock if and only if there is an edge e ∈ E such that s(e) > 0 and e
is not an incoming edge of some sink of G. A state s of G is safe if and only if for all
e ∈ E it holds that s(e) ≤ 1; otherwise s is unsafe. A workflow graph G ∶= (V,E, l) is
safe if and only if all its reachable states are safe; otherwise G is unsafe.

Definition 4.3 (Sound worfklow graphs)
A workflow graph G is sound if and only if G is safe and has no reachable deadlocks.
⌟

Given a node v ∈V of a workflow graph G ∶= (V,E, l), by ●v we denote the set of all
incoming edges of v. Whereas by v●, we denote the set of all outgoing edges of v. In
what follows, without loss of generality, we assume that for every vertex v of every
workflow graphs it does not hold that ∣●v∣ > 1 and ∣v● ∣ > 1. A node v ∈V is a gateway
if and only if it holds that ∣●v∣ > 1 or ∣v● ∣ > 1. A gateway v ∈V is a split if and only
if ∣●v∣ > 1. A gateway v ∈V is a join if and only if ∣v● ∣ > 1. Hence, every gateway is
either a split or a join, but not both.

Let G ∶= (V,E, l) be a triple, where (V,E) is a finite directed graph consisting of a
set V of nodes and a set E ⊆V ×V of edges, and l ∶V → {AND,XOR,OR} is a partial
mapping. A prefix of G is a triple G′ ∶= (V ′,E′, l′), denoted by G′ ⊑G, where V ′ ⊆V
is such that if v ∈V ′ then for every v′ ∈V for which (v′,v) ∈ E+ it holds that v′ ∈V ′,
E′ ⊆ E is such that (V ′,E′) is a connected graph, and l′ ∶= l∣dom(l)∩V ′ . We write G′ ⊏G
if and only if G′ ⊑G and G′ ≠G.

Let G ∶= (V,E, l) be a prefix of a workflow graph and let X ⊆V be all the nodes
of G such that for every x ∈ X it holds that x● = ∅. A completion of G is a triple
G′ ∶= (V ′,E′, l), where V ′ ∶=V ∪Y , Y ∩V =∅, ∣X ∣ = ∣Y ∣, and there is a bijection b from
X to Y , and E′ ∶= E ∪b.

4.2 Proofs

It is easy to see that a completion of a workflow graph is again a workflow graph.

Corollary 4.4 (Completion is a workflow graph)
A completion of a prefix of a workflow graph is a workflow graph. ⌟

Corollary 4.4 follows immediately from its definition.
Split Miner produces models with OR-joins and then applies Algorithm 9 to

replace trivial OR-joins with AND- and XOR-joins. Next, we demonstrate that an
acyclic workflow graph in which all joins are OR-joins is guaranteed to be sound.

24 Augusto et al.

Lemma 4.5 (Sound acycic workflow graphs)
If a workflow graph G ∶= (V,E, l) is acyclic, i.e., E+ is irreflexive, such that for every
split v ∈V it holds that l(v) ≠OR and for every join v ∈V it holds that l(v) =OR, then
G is sound. ⌟

Proof (Sketch) By Noetherian induction on prefixes of G, we show that a completion
of G is sound. Let G be the set of all prefixes of G. Then, (G,⊑) is a well-founded set.
Induction basis: A completion of (s,∅,∅), where s ∈V is the source of G, is sound.

Clearly, a workflow graph ({s,x},{(s,x)},∅), where s ≠ x, is sound.
Induction step: Let G′ ∶= (V ′,E′, l′) ∈ G be a prefix of G. Assume that for every

G′′ ∈ G such that G′′ ⊏ G′ it holds that a completion of G′′ is sound. Let Ĝ ∶=
(V̂ , Ê, l̂) ⊏G′ be such that E′∖ Ê = {e}, e ∈ E. We distinguish these two cases:
1. The target node v of e is in V̂ . Then, v is a join for which it holds that l(v) =

OR; indeed, for every join j ∈V it holds that l(j) = OR. By definition of the
semantics of workflow graphs, refer to Definition 4.2, and because G and, thus,
G′ are acyclic, it holds that a completion of G′ is sound. The only interesting
case here is when for the source v′ of e it holds that l(v′) = XOR and ∣v′ ● ∣ > 1.
In this case, one cannot reach a deadlock or unsafe state from a state s of
a completion of G′ for which s(e) = 1 because for every join j that can be
reached from v′ via a directed path it holds that l(j) =OR.

2. The target node v of e is not in V̂ . Then, v is not a join and, clearly, a completion
of G′ is sound. Note that a deadlock or unsafe reachable marking in a workflow
graph can be introduced only via a fresh join.

Hence, a completion of G is sound. It is easy to see that if a completion of G is sound,
then G is also sound. ◾

Before showing that a replacement of a trivial OR-join preserves soundness of an
acyclic workflow graph, we define this transformation formally.

Definition 4.6 (Replacement of OR join)
Let G ∶= (V,E, l) be a workflow graph, such that for every split v ∈V it holds that
l(v) ≠OR. Let v ∈V be a join, such that l(v) =OR. Let s be the result of Algorithm 9
for the input of G and v. The result of replacement of v in G is a workflow graph
G′ ∶= (V,E, l′), where l′ ∶= {(x,y) ∈ l ∣x ≠ v}∪{(v,s)} ⌟
Next, we demonstrate that replacement of an OR-join in a sound acyclic workflow
graph results in a sound workflow graph.

Lemma 4.7 (Replacement of OR join)
Let G ∶= (V,E, l) be a sound acyclic workflow graph such that for every split v ∈V it
holds that l(v) ≠OR. Let v ∈V be a join, such that l(v) =OR. If G′ ∶= (V,E, l′) is the
result of replacement of v in G, then G′ is sound. ⌟

Proof (Sketch) By definition of Algorithm 9. We distinguish three cases:
○ l′(v) =OR. It holds that G′ =G and, thus G′ is sound.
○ l′(v) = AND. According to Algorithm 9, it holds that for all the splits on all the

paths from the minimal dominator d of v to v are AND-splits. Also, it holds that
no two distinct outgoing edges of a split on a path from v to d lead to the same
incoming edge of v. Hence, it holds that from every reachable state that marks an
incoming edge of v one can reach a state that marks all the incoming edges of v.
Hence, the sets of all the reachable states of G and G′ are the same. Thus, G′ is
sound.

Title Suppressed Due to Excessive Length 25

○ l′(v) = XOR. According to Algorithm 9, it holds that for all the splits on all the
paths from the minimal dominator d of v to v are XOR-splits. Also, it holds that
no two distinct outgoing edges of a split on a path from v to d lead to the same
incoming edge of v. Hence, it holds that from every reachable state that marks
exactly one incoming edge of v one cannot reach a state that marks two incoming
edges of v. Hence, the sets of all the reachable states of G and G′ are the same.
Thus, G′ is sound.

◾

Clearly, one can apply replacements to all the OR-joins to obtain a sound acyclic
workflow graph without trivial OR-joins.

Theorem 4.8 (Replacement of OR joins)
Let G ∶= (V,E, l) be a sound acyclic workflow graph such that for every split v ∈V it
holds that l(v) ≠OR. Let f ∶V ′→ {XOR,AND,OR}, where V ′ is the set of all joins v
of G for which it holds that l(v) =OR, and f (v), v ∈V ′, is the result of Algorithm 9 for
the input of G and v. If G′ ∶= (V,E, l′), where l′ ∶= {(x,y) ∈ l ∣y ≠ OR}∪{(x, f (x)) ∈
V ′×{XOR,AND,OR}∣x ∈V ′}, then G′ is sound. ⌟

The proof of Theorem 4.8 follows immediately from Lemma 4.7 and the observation
that the order of replacements of OR joins in a sound acyclic workflow graph does not
influence the result. The latter fact holds (i) because G and G′ have the same structure,
i.e., the same nodes and edges, and (ii) because replacements of OR joins preserve
the semantics of splits, i.e., for every v ∈V such that ∣v● ∣ > 1 it holds that l(v) = l′(v);
note that the result of Algorithm 9 depends only on these two factors.

5 Evaluation

We implemented Split Miner (hereafter SM) as a standalone Java application.11 The
tool takes as input an event log in MXML or XES format and the values for the
thresholds ε and η , and it outputs a BPMN process model. Using this implementation,
we empirically compared SM against five existing methods using a set of publicly
available logs.

5.1 Datasets

We used the collection of real-life event logs provided by the 4TU Centre for Research
Data as of August 2017.12 These logs include all the logs of the annual Business
Process Intelligence Challenge (BPIC), plus other logs such as the Road Traffic Fines
Management Process (RTFMP) and the SEPSIS Cases log. They record executions of
business processes in a range of domains including healthcare, finance and government.
We included all real-life logs of 4TU Centre except those that do not explicitly
capture business processes (BPIC 2011 and 2016 logs) and the Environmental permit
application process log, which is subsumed by BPIC 2015. In seven logs (BPIC14,
the BPIC15 subset and BPIC17), we applied the filtering method in [10] to remove
infrequent behavior prior to applying each of the discovery methods. Without this
filtering step, all the method generated models with an F-score of close to zero due

11 Available at http://apromore.org/platform/tools
12 https://data.4tu.nl/repository/collection:event_logs_real

26 Augusto et al.

to the complexity of these logs. Table 3 reports the statistics of the event logs (after
the initial filtering where applicable). The dataset is heterogeneous in the number of
traces (681 to 150,370), in the number of distinct traces (183 to 8767), in the number
of event classes (7 to 82), and in the trace length (1 to 185 events).

Log Total Distinct Total Distinct Trace Length
Name Traces Traces Events Events min avg max

BPIC12 13087 4366 262200 36 3 20 175
BPIC13cp 1487 183 6660 7 1 4 35
BPIC13inc 7554 1511 65533 13 1 9 123
BPIC14f 41353 14948 369485 9 3 9 167
BPIC151f 902 295 21656 70 5 24 50
BPIC152f 681 420 24678 82 4 36 63
BPIC153f 1369 826 43786 62 4 32 54
BPIC154f 860 451 29403 65 5 34 54
BPIC155f 975 446 30030 74 4 31 61
BPIC17f 21861 8767 714198 41 11 33 113
RTFMP 150370 231 561470 11 2 4 20
SEPSIS 1050 846 15214 16 3 14 185

Table 3: Statistics of the event logs employed.

5.2 Experimental setup

We chose five state-of-the-art discover methods as baselines: Inductive Miner Infre-
quent (IM), Evolutionary Tree Miner (ETM), Heuristics Miner as implemented in the
ProM 6 toolset (HM6), Structured Miner over Heuristics Miner as implemented in
ProM 6 (S-HM6), and Fodina Miner (FO).

Since SM takes as input two thresholds, namely ε and η , we ran an exhaustive
hyperparameter optimization to identify the values leading to the highest F-score across
all logs, which turned out to be ε = 0.1, η = 0.4. We then performed two evaluations.
First, we compared all the discovery methods using their default parameters against
SM with the above hyperparameter-optimized settings. Second, we hyperparameter-
optimized all the baselines methods as follows.13 IM takes as input only one threshold
for noise filtering. SM, HM6 (as well S-HM6) and FO take as input two thresholds
for filtering and balancing fitness and precision. We used steps of 0.05 (range of 0.0
to 1.0) for IM, and steps of 0.10 for the thresholds of SM, HM6, S-HM6 and FO. For
the default parameters evaluation, we measured the quality of the produced models
using all the quality dimensions discussed in Section 2.1, namely fitness, precision and
F-Score as proxies for accuracy, 3-fold F-score as proxy for generalization, size, CFC
and structuredness (struct.) as proxies for complexity, and soundness (as defined in
section 2). Further, we report about the average execution time of 5 executions holding
out the first (to reduce data loading time bias). For the hyperparameter-optimized
evaluation, we measured only fitness and precision, because interested to find the
best balance between the two metrics. Each metric was computed on BPMN models,
except for fitness, precision and soundness, which were measured on Petri nets since
the measuring tools work only on Petri nets. The conversions between BPMN and
Petri nets were done using ProM’s BPMN Miner package [9]. This conversion was

13 We did not hyperparameter-optimize ETM due to the prohibitively high execution times of this method.

Title Suppressed Due to Excessive Length 27

possible for all event logs employed because none of the process models produced by
split miner on these logs contained any OR-join.

All the tests were performed on a 6-core Xeon E5-1650 3.5Ghz with 128GB
of RAM running JVM 8 with 48GB of heap space. We timed out each discovery
operation from a log at 1 hour for the default parameters evaluation, and at 24 hours
for the hyperparameter-optimization.

All the tools required to reproduce the experiments and all the experimental results
are available at https://doi.org/10.6084/m9.figshare.5684119.v1 .

5.3 Results

Table 4 shows the experimental results when using the default parameters for each
method. The best score for each measure on a given log is highlighted in bold. A“-”
indicates that a given accuracy or complexity measure could not be reliably computed
due to syntactic or semantic issues in the discovered model (e.g. disconnected or
unsound model).

Figure 8 displays the experimental results of the experiments with hyperparameter-
optimization. Each scatter plot corresponds to a log, and each dot in the scatter plot
captures the fitness and precision of the model produced by a given configuration (i.e.
combination of input parameters) of a given method. The lack of dots corresponding
to a given method on some plots (e.g. FO in BPIC13i and HM in SEPSIS) means that
it was not possible to evaluate fitness or precision for the models produced by this
method on the log in question.

The results in Table 4 put into evidence the consistently high accuracy, generaliza-
tion and scalability of SM, and the low complexity of the produced models. SM strikes
the best F-Score and generalization across the whole dataset. But while SM excels
in F-score, it generally does not achieve neither the highest fitness nor the highest
precision separately. Instead, IM achieves the highest or second-highest fitness scores
on all logs except for the log BPIC13cp, while ETM achieves the highest precision in
about half of logs. The plots of Fig. 8 show that the performance of the configurations
of SM (green dots) pareto-dominates those of other techniques in the middle ranges
of fitness and precision across the whole dataset. Meanwhile, IM pareto-dominates
other methods in the region with low precision and low fitness, meaning that for some
configurations, IM achieves high precision at the expense of low fitness or vice-versa.

The complexity of the models discovered by SM is low, both in terms of size and
CFC. And even if SM does not aim to discover structured models as opposed to IM
and ETM, structuredness is often high: over 50% in 7 logs, 4 of which fully structured.
In those logs where SM’s output is not the least complex, it is second, mostly behind
ETM. Although ETM outperforms SM in complexity, the former requires very long
execution times (one hour). In contrast, SM discovered all the process models in less
than one second (on average), being always 2-16 times faster than the second fastest
method on every log.

As an example, Figs. 9 and 10 show the BPMN models discovered by IM and SM
from the SEPSIS log – a log extracted from the enterprise resource planning system
of a hospital, recording patient pathways in a hospital unit. We observe that the model
produced by IM exhibits the “flower” pattern – all but the first activity can be skipped
or repeated any number of times. This is why it achieves a fitness close to 1, but at the
expense of very low precision. The model produced by SM is smaller (almost half the

28 Augusto et al.

Log Discovery Accuracy Gen. Complexity AVG Exec.
Name Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

SM 0.96 0.81 0.88 0.88 51 41 0.67 yes 0.22
IM 0.98 0.50 0.66 0.66 59 37 1.00 yes 5.64

BPIC12 ETM 0.33 0.98 0.49 - 69 10 1.00 yes 3,600
HM6 - - - - 89 197 0.28 no 1.78

S-HM6 - - - - 86 46 0.20 no 400.78
FO - - - - 102 117 0.13 no 13.33
SM 0.99 0.94 0.96 0.96 11 6 1.00 yes 0.01
IM 0.82 1.00 0.90 0.90 9 4 1.00 yes 0.06

BPIC13cp ETM 0.99 0.76 0.86 - 11 17 1.00 yes 3,600
HM6 - - - - 13 8 - no 0.07

S-HM6 0.94 0.93 0.94 0.95 13 4 1.00 yes 0.09
FO - - - - 25 23 0.60 no 0.07
SM 0.98 0.92 0.95 0.95 12 8 1.00 yes 0.03
IM 0.92 0.50 0.65 0.68 13 7 1.00 yes 0.62

BPIC13inc ETM 0.84 0.80 0.82 - 28 24 1.00 yes 3,600
HM6 0.91 0.96 0.93 0.93 13 9 1.00 yes 0.53

S-HM6 0.91 0.98 0.94 0.94 13 9 1.00 yes 0.60
FO - - - - 44 55 0.75 no 1.48
SM 0.77 0.93 0.84 0.85 20 14 1.00 yes 0.20
IM 0.89 0.71 0.79 0.79 31 18 1.00 yes 2.57

BPIC14f ETM 0.68 0.94 0.79 - 22 15 1.00 yes 3,600
HM6 - - - - 44 56 - no 2.59

S-HM6 - - - - 120 51 0.27 no 20.72
FO - - - - 37 46 0.41 no 37.81
SM 0.90 0.90 0.90 0.89 111 45 0.51 yes 0.15
IM 0.97 0.57 0.71 0.72 164 108 1.00 yes 0.39

BPIC151f ETM 0.57 0.89 0.69 - 73 21 1.00 yes 3,600
HM6 - - - - 150 98 - no 0.43

S-HM6 - - - - 228 122 0.57 no 152.46
FO 1.00 0.76 0.87 0.86 146 91 0.26 yes 0.96
SM 0.77 0.91 0.83 0.83 126 45 0.31 yes 0.10
IM 0.93 0.56 0.70 0.70 193 123 1.00 yes 0.54

BPIC152f ETM 0.62 0.90 0.73 - 78 19 1.00 yes 3,600
HM6 - - - - 194 158 0.11 no 0.41

S-HM6 0.98 0.60 0.75 0.76 265 163 0.34 yes 199.57
FO - - - - 195 159 0.09 no 2.03
SM 0.79 0.93 0.85 0.85 94 33 0.48 yes 0.09
IM 0.95 0.55 0.70 0.69 159 108 1.00 yes 0.83

BPIC153f ETM 0.66 0.88 0.75 - 78 26 1.00 yes 3,600
HM6 0.95 0.67 0.79 0.79 157 151 0.07 yes 0.57

S-HM6 0.95 0.61 0.74 0.75 215 183 0.30 yes 154.19
FO - - - - 174 164 0.06 no 1.72
SM 0.73 0.90 0.81 0.82 100 35 0.24 yes 0.06
IM 0.96 0.58 0.73 0.72 162 111 1.00 yes 0.48

BPIC154f ETM 0.66 0.95 0.78 - 74 17 1.00 yes 3,600
HM6 - - - - 158 129 0.15 no 0.39

S-HM6 0.99 0.65 0.78 0.78 207 137 0.29 yes 143.26
FO - - - - 157 127 0.15 no 1.11
SM 0.79 0.94 0.86 0.85 106 34 0.28 yes 0.09
IM 0.94 0.18 0.30 0.61 134 95 1.00 yes 0.40

BPIC155f ETM 0.58 0.89 0.70 - 82 26 1.00 yes 3,600
HM6 - - - - 166 124 0.15 no 0.42

S-HM6 1.00 0.68 0.81 0.81 239 151 0.43 yes 159.47
FO 1.00 0.71 0.83 0.83 166 125 0.15 yes 1.30
SM 0.96 0.85 0.90 0.90 31 18 1.00 yes 1.00
IM 0.98 0.70 0.82 0.82 35 20 1.00 yes 6.23

BPIC17f ETM 0.72 1.00 0.84 - 31 5 1.00 yes 3,600
HM6 - - - - 36 18 - no 5.68

S-HM6 0.95 0.52 0.67 0.74 42 13 1.00 yes 5.74
FO - - - - 98 82 0.25 no 55.20
SM 1.00 0.97 0.98 0.98 22 17 0.46 yes 0.20
IM 0.99 0.63 0.77 0.80 34 20 1.00 yes 5.17

RTFMP ETM 0.79 0.98 0.87 - 46 33 1.00 yes 3,600
HM6 - - - - 47 51 0.13 no 4.80

S-HM6 0.98 0.95 0.96 0.96 163 97 1.00 yes 274.35
FO 1.00 0.94 0.97 0.97 31 32 0.19 yes 2.57
SM 0.76 0.86 0.81 0.81 33 23 0.91 yes 0.02
IM 0.99 0.48 0.65 0.61 50 32 1.00 yes 0.23

SEPSIS ETM 0.71 0.84 0.77 - 30 15 1.00 yes 3,600
HM6 - - - - 82 137 0.17 no 0.12

S-HM6 0.92 0.42 0.58 0.58 225 131 1.00 yes 255.63
FO - - - - 60 63 0.28 no 0.23

Table 4: Default parameters evaluation results.

Title Suppressed Due to Excessive Length 29

Fig. 8: Results of the hyperparameter-optimization for SM(green), IM(red),
HM6(black), S-HM6(yellow), FO(blue). Horizontal and vertical axes report fitness
and precision (respectively).

size), with less skipping edges and with clearly delimited loops, and is more accurate
than the one produced by IM.

6 Conclusion and Future Work

The empirical findings show that Split Miner is a step forward towards more scalable
and robust methods for automated discovery of business process models. Split Miner
outperforms all baselines in terms of F-score and generalization on all twelve real-life
event logs included in the evaluation. It produces models that are comparable in terms
of size and control-flow complexity to those produced by the Inductive Miner and
the Evolutionary Tree Miner, which produced the best results along these complexity

30 Augusto et al.sepsis_yam

Leucocytes
Release B

IV Liquid

ER Triage

Admission
NC

Admission
IC

IV
Antibiotics

Release C

Release D

CRP

ER
Registrati

on

ER Sepsis
Triage

Release A

LacticAcid

Release E

Return ER

Fig. 9: Model discovered by IM from the Sepsis log.sepsis_sm-wg

Release E

CRPER
Registration

Release B

Release D

IV Liquid IV Antibiotics Return ERLeucocytesER Triage Admission
NC

ER Sepsis
Triage

Admission IC

Release C

Release A

LacticAcid

Fig. 10: Model discovered by SM from the Sepsis log.

measures in the majority of event logs. Furthermore, the execution times of the Split
Miner were found to be at least three times faster (and up to 16 times faster) than the
closest baseline across all event logs.

One of the keystones of Split Miner is a filtering method for directly-follows
graphs. The proposed method however only filters directly-follows relations (not
tasks) and thus an additional preprocessing filter was required to handle the BPIC14,
BPIC15, and BPIC17 event logs. This same filtering step had to be applied for all
baselines, since otherwise all baselines, as well as Split Miner, lead to low F-scores.
A possible avenue for future work is to design a filtering approach combining the
strengths of the preprocessing filter used in the experiments with Split Miner’s filter.

Another direction for future work is to discover process models from more complex
event logs than those that are typically extracted from enterprise information systems.
For example, in the emerging field of Robotic Process Automation (RPA) [15], an
open question is how to automatically discover repetitive routines – amenable for
automation using RPA technology – from fine-grained event logs, such as clickstream
data recording the interactions between process workers and enterprise applications.
A major challenge is that in such fine-grained logs, the start and the end of repetitive
routines is not clearly delimited and a process worker might sometimes be multitasking,
which entails that events corresponding to multiple tasks might be interspersed with
each other. To tackle this challenge, automated process discovery methods need to
evolve from discovering models from collections of traces corresponding to well-
delimited instances of a process, to discovering models from traces that contain tasks
from multiple process instances (or even from multiple processes) mixed together.

Acknowledgments. This research is partly funded by the Australian Research Council
(grant DP180102839) and the Estonian Research Council (grant IUT20-55).

Reproducibility. Links to all tools and datasets required to reproduce the experiments
are given in Sections IV.B-IV.C.

References

1. A. Adriansyah, J. Muñoz-Gama, J. Carmona, B.F. van Dongen, and W.M.P. van der Aalst. Measuring
precision of modeled behavior. ISeB, 13(1):37–67, 2015.

Title Suppressed Due to Excessive Length 31

2. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance checking using cost-based
fitness analysis. In Proc. of EDOC. IEEE, 2011.

3. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno. Automated discovery of structured
process models: Discover structured vs. discover and structure. In Proc. of ER, LNCS 9974. Springer,
2016.

4. Adriano Augusto, Raffaele Conforti, Marlon Dumas, and Marcello La Rosa. Split miner: Discovering
accurate and simple business process models from event logs. In Proceedings of the 17th IEEE
International Conference on Data Mining. IEEE Computer Society, 2017.

5. Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, Andrea
Marrella, Massimo Mecella, and Allar Soo. Automated discovery of process models from event logs:
Review and benchmark. CoRR, abs/1705.02288, 2017.

6. J. Buijs, B. van Dongen, and W. van der Aalst. On the role of fitness, precision, generalization and
simplicity in process discovery. In Proc. of CoopIS, LNCS 7565. Springer, 2012.

7. J. S. Cardoso. Business process control-flow complexity: Metric, evaluation, and validation. Int. J.
Web Service Res., 5(2):49–76, 2008.

8. Weiru Chen, Jing Lu, and Malcolm Keech. Discovering exclusive patterns in frequent sequences.
International Journal of Data Mining, Modelling and Management, 2(3):252–267, 2010.

9. R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. BPMN Miner: Automated discovery of
BPMN process models with hierarchical structure. Inf. Syst., 56, 2016.

10. R. Conforti, M. La Rosa, and A.H.M. ter Hofstede. Filtering out infrequent behavior from business
process event logs. IEEE Trans. Knowl. Data Eng., 29(2), 2017.

11. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–
271, Dec 1959.

12. Bolin Ding, David Lo, Jiawei Han, and Siau-Cheng Khoo. Efficient mining of closed repetitive gapped
subsequences from a sequence database. In Proc. of the International Conference on Data Engineering
(ICDE), pages 1024–1035. IEEE, 2009.

13. M. Dumas, L. Garcı́a-Bañuelos, and A. Polyvyanyy. Unraveling unstructured process models. In
BPMN Workshop, volume 67 of Lecture Notes in Business Information Processing, pages 1–7. Springer,
2010.

14. M. Dumas, M. La Rosa, J. Mendling, R. Mäesalu, H.A. Reijers, and N. Semenenko. Understanding
business process models: the costs and benefits of structuredness. In Proc. of CAiSE. Springer, 2012.

15. P. Harmon. Robotic process automation comes of age. BPTrends Newsletter, June 2017.
16. S. Leemans, D. Fahland, and W. van der Aalst. Discovering block-structured process models from

event logs - a constructive approach. In Proc. of Petri Nets, LNCS. Springer, 2013.
17. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering block-structured process

models from event logs containing infrequent behaviour. In Niels Lohmann, Minseok Song, and
Petia Wohed, editors, Business Process Management Workshops: BPM 2013 International Workshops,
Beijing, China, August 26, 2013, Revised Papers, pages 66–78. Springer International Publishing,
Cham, 2014.

18. Jing Lu, Weiru Chen, Osei Adjei, and Malcolm Keech. Sequential patterns postprocessing for structural
relation patterns mining. Strategic Advancements in Utilizing Data Mining and Warehousing Tech:
New Concepts and Developments, page 216, 2008.

19. Jing Lu, Weiru Chen, and Malcolm Keech. Graph-based modelling of concurrent sequential patterns.
Expl Adv in Interdiscip Data Mining and Anal: New Trends, page 110, 2011.

20. Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowl Discovery, 1(3):259–289, 1997.

21. J. Mendling. Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and
Guidelines for Correctness. Springer, 2008.

22. J. Mendling, H.A Reijers, and W.M.P van der Aalst. Seven process modeling guidelines (7PMG).
Information and Software Technology, 52(2):127–136, 2010.

23. T. Molka, D. Redlich, W. Gilani, X. Zeng, and M. Drobek. Evolutionary computation based discovery
of hierarchical business process models. In Proc. of BIS. Springer, 2015.

24. Jian Pei, Haixun Wang, Jian Liu, and et al. Discovering frequent closed partial orders from strings.
IEEE Transactions on Knowledge and Data Engineering, 18(11):1467–1481, 2006.

25. A. Polyvyanyy. Structuring process models. Phd thesis, Universität Potsdam, 2012.
26. A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas. Structuring acyclic process models. Inf. Syst.,

37(6):518–538, 2012.
27. A. Polyvyanyy, L. Garcı́a-Bañuelos, D. Fahland, and M. Weske. Maximal structuring of acyclic process

models. Comput. J., 57(1):12–35, 2014.
28. A. Polyvyanyy, J. Vanhatalo, and H. Völzer. Simplified computation and generalization of the refined

process structure tree. In Web Services and Formal Methods, volume 6551 of LNCS, pages 25–41.
Springer, 2010.

29. Y. Tong, L. Zhao, D. Yu, S. Ma, Z. Cheng, and K. Xu. Mining compressed repetitive gapped sequential
patterns efficiently. Advanced Data Mining and Applications, pages 652–660, 2009.

32 Augusto et al.

30. W.M.P. van der Aalst. Process Mining - Data Science in Action. Springer, 2016.

31. W.M.P. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek, M. Voorhoeve, and
M. Wynn. Soundness of workflow nets: classification, decidability, and analysis. Formal Asp. Comput.,
23(3), 2011.

32. W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process models
from event logs. IEEE Trans. Knowl. Data Eng., 16(9), 2004.

33. Seppe KLM vanden Broucke and Jochen De Weerdt. Fodina: a robust and flexible heuristic process
discovery technique. Decision Support Systems, 2017.

34. Hagen Völzer. A new semantics for the inclusive converging gateway in safe processes. In International
Conference on Business Process Management, pages 294–309. Springer, 2010.

35. J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A multi-dimensional quality assessment
of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst., 37(7), 2012.

36. A. Weijters and J. Ribeiro. Flexible Heuristics Miner (FHM). In Proc. of CIDM. IEEE, 2011.

37. Mohammed J Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine Learning,
42(1):31–60, 2001.

Adriano Augusto is joint Ph.D. student at the University of Tartu
(Estonia) and The University of Melbourne (Australia). He grad-
uated in Computer Engineering at Polytechnic of Turin (Italy)
in 2016, presenting a master thesis in the field of process min-
ing. His current interests are in automated process discovery and
conformance checking.

Raffaele Conforti is a Lecturer in Information Systems with
The University of Melbourne, Australia. Prior to that, he was
a Post-Doctoral Research Fellow at the Queensland University
of Technology. He conducts research on process mining and
automation, with a focus on automated process discovery, quality
improvement of process event logs and process-risk management.

Marlon Dumas is a Professor of Information Systems at Univer-
sity of Tartu, Estonia. Prior to this appointment he was faculty
member at Queensland University of Technology and visiting
researcher at SAP Research, Australia. His research interests span
across the fields of software engineering, information systems and
business process management. He is co-author of the textbook
“Fundamentals of Business Process Management”.

Title Suppressed Due to Excessive Length 33

Marcello La Rosa is a Professor of Information Systems at The
University of Melbourne, Australia. Prior to that, he held appoint-
ments at the Queensland University of Technology and at NICTA
(now Data61). His research interests include process mining,
consolidation and automation. He leads the Apromore Initiative
(www.apromore.org), a strategic collaboration between various
universities for the development of a process analytics platform,

and co-authored the textbook “Fundamentals of Business Process Management”.

Artem Polyvyanyy is a Senior Lecturer at the School of Comput-
ing and Information Systems, Melbourne School of Engineering,
at the University of Melbourne, Australia. He received a PhD
degree (Dr. rer. nat.) in the scientific discipline of Practical Com-
puter Science from the University of Potsdam, Germany. His
research interests include Distributed and Parallel Systems, For-
mal Methods, Information Systems, Software Engineering, Work-
flow Management, and Business Process Management. More
recently, he has conducted research on process analysis, behavior

abstraction in concurrent systems, process mining, and process querying.

